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ABSTRACT
The ever-increasing amounts of simulation data produced
by scientists demand high-end parallel visualization capa-
bility. However, image compositing, which requires inter-
processor communication, is often the bottleneck stage for
parallel rendering of large volume data sets. Existing im-
age compositing solutions either incur a large number of
messages exchanged among processors (such as the direct
send method), or limit the number of processors that can
be effectively utilized (such as the binary swap method).
We introduce a new image compositing algorithm, called
2-3 swap, which combines the flexibility of the direct send
method and the optimality of the binary swap method. The
2-3 swap algorithm allows an arbitrary number of processors
to be used for compositing, and fully utilizes all participat-
ing processors throughout the course of the compositing. We
experiment with this image compositing solution on a super-
computer with thousands of processors, and demonstrate its
great flexibility as well as scalability.

1. INTRODUCTION
Leveraging the power of supercomputers, scientists can

now simulate many things from galaxy interaction to molec-
ular dynamics in unprecedented scales and details, lead-
ing to new scientific discoveries. Scientific simulations of-
ten produce data that are volumetric, time-varying, and
multi-variate. The data may contain thousands of time steps
with each time step having billions of voxels and each voxel
recording dozens of variables. The vast amounts of data
produced by these simulations, ranging from tens to hun-
dreds of terabytes, demand a high-resolution, high-quality,
and high-performance visualization capability so that scien-
tists are able to test their hypotheses and discover insights in
a timely and successful manner. A single computer cannot
render terabytes of data interactively. Parallel rendering,
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which utilizes a supercomputer or a cluster of PCs for ren-
dering, provides a natural solution for effective visualization
of very large data sets. As visualization calculations are
shared among multiple processors in a divide-and-conquer
manner, the I/O and rendering costs are split among proces-
sors. A parallel rendering solution that ensures a balanced
workload across processors makes interactive visualization
of large data sets not only possible, but also very practical.

A typical parallel rendering solution consists of several
stages, including data partition, distribution, rendering, fi-
nal image composition, and image delivery. Among the three
basic parallel rendering approaches, namely, sort-first, sort-
middle, and sort-last, defined by Molar et al. [9], sort-last
parallel rendering has been widely used by visualization re-
searchers [5, 1, 20, 19, 17, 16, 12, 2, 3] due to its simple
task decomposition for achieving load balancing. With the
sort-last approach, the rendering stage scales very well since
no communication overhead is involved. It can be easily
incorporated into existing visualization software or systems
for high-performance parallel rendering. However, the fi-
nal image compositing stage (i.e., back-to-front alpha blend-
ing of partial images) in sort-last rendering demands inter-
processor communication, which could become very expen-
sive because of the potentially large amount of messages
exchanged. Therefore, image compositing could become a
bottleneck that affects the efficiency of the sort-last parallel
rendering pipeline.

Among different image compositing methods developed
for sort-last parallel volume rendering, direct send [11] and
binary swap [7, 8] are the two representative and most com-
monly used ones. Although simple and easy to implement,
the direct send method requires N ·(N−1) messages to be ex-
changed among N compositing processors in the worst case.
The binary swap compositing method reduces the number of
messages exchanged from N ·(N−1) to N logN using a binary
tree style compositing process. However, to fully utilize the
parallelism, the number of processors used must be an exact
power-of-two due to the nature of binary compositing.

In this paper, we introduce a new image compositing algo-
rithm, called 2-3 swap, for parallel volume rendering which
uses an arbitrary number of processors. The advantage of
the 2-3 swap compositing algorithm is that it offers benefits
of both the direct send and binary swap algorithms. On
one hand, the 2-3 swap compositing algorithm can utilize
any number of processors available, thus is as flexible as the
direct send method. On the other hand, the number of mes-
sages exchanged among processors is bounded by O(N logN),
which is as good as the binary swap algorithm. Actually, as
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shown later in this paper, the binary swap algorithm can
be considered as a special case of our 2-3 swap algorithm.
Like the direct send and binary swap algorithms, the 2-3
swap algorithm is easy to understand and simple to imple-
ment. Another advantage of this algorithm is that it has the
potential to be incorporated into simulation-time data visu-
alization where the rendering is performed simultaneously
with the simulation using the same supercomputer [18, 21].
Our algorithm scales very well in a massively parallel envi-
ronment (i.e., thousands of processors on a supercomputer),
which we demonstrate using parallel volume rendering of
large data sets to generate high-resolution (up to 40962) im-
ages.

2. RELATED WORK
Parallel computing has been widely used in many areas of

graphics and visualization, such as polygon rendering, iso-
surface extraction, particle tracing, and volume rendering.
Since the early 1990s, several image compositing methods
have been developed for parallel visualization tasks that re-
quire combining partial images generated from processors
into a final image. The direct send method is the simplest
compositing technique [4, 10, 11]. This method is flexible
with network interconnect and the number of processors
used in compositing. However, it introduces link contention
due to the nature of all-to-all communication pattern. Ma
et al. [7, 8] introduced the binary swap method which makes
use of all processors in all stages of composition in a binary
tree manner. The method perfectly balances the composit-
ing workload among processors and reduces the number of
messages exchanged. Finally, Lee et al. [5] introduced a
parallel pipeline method which avoids link contention. This
contention-free solution restricts each processor to sending
only one message to its next processor in turn. The com-
positing takes N− 1 stages to complete for N compositing
processors, and the total number of messages exchanged re-
mains the same as the direct send method.

Over the years, various techniques have been presented to
optimize the aforementioned parallel image compositing al-
gorithms. One optimization technique is to take advantage
of the sparseness of the partial images (i.e., images with a
large area of background pixels) on each processor to re-
duce the workload [7, 8]. To optimize direct send, Stompel
et al. [15] introduced scheduled linear image compositing
(SLIC) algorithm which computes a compositing schedule
and classifies pixels into background pixels, pixels in the
non-overlapping areas, and pixels in the overlapping areas.
Only the pixels in the overlapping areas require compositing.
Lee et al. [5] used multiple bounding boxes to skip the back-
ground pixels in their parallel pipeline method. The same
solution was adopted by Takeuchi et al. [17] in a binary swap
implementation. Strengert et al. [16] presented a composit-
ing scheme that takes into account the footprints of volume
bricks in the data hierarchy to minimize the costs for read-
ing from framebuffer, network communication, and blend-
ing. The other optimization technique is to take a finer-grain
image space partition for the compositing tasks [5, 20, 15,
17]. This technique achieves a more balanced workload by
assigning finer-grain image partitions among processors in
an interleaving fashion. The third optimization technique is
to compress the pixel data before transmitting them to other
processors. Several works [7, 8, 1, 20, 17, 15] reported the
use of run-length encoding for lossless compression to accel-

erate pixel transferring and reduce communication cost. Fi-
nally, the last optimization technique is to overlap all stages
of the process through pipelining, including reading, trans-
ferring, and blending pixel data. For example, Cavin et al.
[2] presented a pipelined sort-last implementation of binary
swap that uses multi-threads to overlap pixel reading, trans-
ferring, and blending. All these performance improvements,
however, remain O(N2) in terms of message exchanged for
the direct send method and do not remove the constraint of
power-of-two processors for the binary swap algorithm.

Hardware-based image compositing equipment and solu-
tions such as Lighting-2 [14] and Sepia-2 [6] have also been
introduced. Although these methods achieve impressive com-
positing speed and high scalability, the cost for building a
large-scale visualization system using such hardware devices
could be prohibitively expensive. More recently, Nonaka
et al. [12] presented a hybrid image composition method
for sort-last parallel rendering on graphics clusters with the
MPC image compositor, which offers high-performance im-
age compositing at a reasonable cost. Pugmire et al. [13]
presented a new solution that utilizes a network process-
ing unit (NPU) for hardware-based image compositing in a
distributed rendering system. Nevertheless, software image
compositing is still widely used in most applications to date.
Moreover, in a supercomputing environment with thousands
of processors, employing dedicated graphics hardware for
image compositing is not practical due to the costs of the
hardware and the added efforts for integration, upgrading,
and maintenance. Our software rendering solution is de-
signed to use a supercomputer, which could be the same
machine that runs the simulation. Therefore, our solution
can be employed in simulation-time data visualization where
the simulation and visualization calculations share the same
machine. Such a solution may output visualization results
instead of simulation data, which substantially reduces the
I/O cost and obviates any post-processing.

3. 2-3 SWAP IMAGE COMPOSITING
In this section, we first discuss the pros and cons for the di-

rect send and binary swap image compositing methods. Two
straightforward extensions of the binary swap algorithm are
also covered for comparison. Then, we describe our image
compositing strategy and present the 2-3 swap image com-
positing method.

3.1 Direct Send and Binary Swap
All parallel image compositing algorithms require parti-

tioning the image space and assigning the corresponding
compositing tasks to processors. The assignment should
be performed in a way so that the compositing workload
is evenly distributed among processors. Each processor is
assigned some image partitions and is responsible for the
compositing tasks in those partitions. The final image is
constructed by tiling all image partitions in order.

The direct send method is the simplest image composit-
ing technique: each processor sends pixel data directly to
the processor responsible for compositing that image par-
tition. It requires only a single stage of communication.
But, in the worst case, there are N · (N− 1) messages to be
exchanged among N compositing processors. In the com-
munication network, link contention is likely to happen for
the direct send method since there are multiple processors
sending messages to the same processor at the same time.



The binary swap method utilizes a binary tree which pairs
up processors in order of compositing. It requires logN
stages of communication for N compositing processors. Un-
like a typical binary tree compositing algorithm where half
of the participating processors become idle after each stage
of the composition, the binary swap algorithm exploits more
parallelism in compositing so that every processor partici-
pates in all stages of the compositing process. The key idea is
that at each stage, instead of having only one processor from
each pair composite for the whole image space, the image
space is divided into two partitions and each processor takes
the responsibility for one of the two partitions. A swapping
of the partitions between the two processors is needed in
the algorithm, thus the name binary swap [7, 8]. Note that
the image partition needed for compositing becomes smaller
as we move up to the root of the binary tree. After logN
stages, the compositing completes and each processor holds
exactly 1

N of the final image. Binary swap can also take
advantage of faster nearest neighbor communications in a
tree or hypercube network: in early stages of the algorithm,
processors exchange messages with their nearest neighbors,
which is exactly when the amount of pixels transferred is the
largest. This nice property makes binary swap much more
scalable than other methods.

The only drawback of binary swap algorithm is that it re-
quires the number of processors to be a power-of-two (N =
2K). If the number of processors is not exactly a power-of-
two (i.e., 2K−1 < N < 2K), a straightforward solution is to
first send the images from N− 2K−1 processors to the rest
of 2K−1 processors and then perform binary swap on the
2K−1 processors directly. This reduced binary swap solution
is convenient. However, in the worst case where N = 2K −1,
about half of the processors will be idle during the entire
compositing process. Moreover, the total image data ex-
changed will be twice as much as in the case where N = 2K ,
which is clearly not desirable. Another solution is to still use
the binary compositing tree with K + 1 levels. In this sce-
nario, the binary tree is complete (with 2K leaf nodes) but
not full. Additional complexity is required in the composit-
ing partner computation. Nevertheless, in the worst case
where N = 2K−1 + 1, the (2K−1 + 1)th processor will be idle
in all but the last compositing stages. In the last stage, the
(2K−1 + 1)th processor will communicate with all the other
2K−1 processors and be responsible for compositing half of
the final image, introducing the most imbalanced workload.
Therefore, both solutions described here are not optimal in
terms of parallelism utilization and compositing efficiency.

3.2 Image Compositing Strategy
By pairing up processors in order of compositing, the bi-

nary swap method essentially uses the direct send method
in each pair. As such, each processor only communicates
with another processor at any stage of compositing. Given
an arbitrary number of processors, our goal is to utilize all
processors in all stages of the compositing process. Thus,
no processors will be idle at any stage, and maximum par-
allelism is ensured. Similar to the binary swap algorithm,
which partitions processors into pairs, we could partition the
processors into groups with each group using the direct send
method for compositing. At any stage of the compositing,
a processor only communicates with other processors in its
own group. The number of processors in each group should
thus be as small as possible in the initial partition (which

Algorithm 1 ConstructCompositingTree (node,n,d)

1: if d = 0 then
2: nodelist ⇐ procid {In node, nodelist keeps the order of the

indices of processors for image partition assignment; procid
is a global variable, initialized as 1.}

3: procid ⇐ procid +1
4: else
5: l ⇐ �n/2�
6: r⇐ �n/2�
7: if r < 2d then
8: create two children, namely, nodel and noder, for node
9: ConstructCompositingTree (nodel , l,d−1)
10: ConstructCompositingTree (noder,r,d−1)
11: else
12: l ⇐ �n/3�
13: m⇐ �n/3�
14: r⇐ �n/3�
15: create three children, namely, nodel , nodem, and noder,

for node
16: ConstructCompositingTree (nodel , l,d−1)
17: ConstructCompositingTree (nodem,m,d−1)
18: ConstructCompositingTree (noder,r,d−1)
19: end if
20: end if

corresponds to the leaf nodes in the compositing tree) so that
a processor only exchanges messages with a few other pro-
cessors in its group. Care should be taken when considering
how to partition the processors. Group size variation should
be kept to a minimum, making the overall compositing pro-
cedure simple and possible to use an arbitrary number of
processors. Furthermore, we must pay special attention to
the choices of image data partition and assignment schemes
in order to reduce the number of messages among processors,
which is essential to ensure the scalability of our algorithm.

3.3 The Algorithm
The 2-3 swap image compositing algorithm is a general-

ization of binary swap to an arbitrary number of processors.
The algorithm is based on an important observation that any
integer number N (N > 1) can be decomposed into a sum-
mation of a list of twos and threes. Therefore, the initial
partition of processors can be achieved using a combination
of twos and threes. 2-3 swap follows a similar multi-stage
image composition process as the binary swap algorithm.
Actually, if the number of processors is a power-of-two, then
our solution reduces to binary swap.

Given N processors, 2K−1 ≤N < 2K , we construct the com-
positing tree recursively using Algorithm 1 by calling Con-

structCompositingTree (root,N,K − 1). The tree con-
structed has K levels. Each non-leaf node in the compositing
tree has either two or three children. Note that the structure
of the compositing tree determines the groups of processors
during each stage of image compositing.

We justify the correctness of Algorithm 1 by showing that
the condition 2d ≤ n < 2d+1 holds in every iteration of the
recursion. For the two children case, (n mod 2) is either 0
or 1, so we have l + r = n and 2d−1 ≤ l ≤ r < 2d . Therefore,
the condition holds. For the three children case, (n mod 3)
can be 0, 1 or 2. When (n mod 3) is either 0 or 1, we have
l + m + r = n and 2d−1 ≤ l = m ≤ r < 2d , thus the condition
holds. When (n mod 3) = 2, we have l + m + r = n− 1, and
then the condition does not hold. However, we can show that
the case (n mod 3) = 2 is impossible. For the three children
case, the if statement returns false in Line 7, implying that



Algorithm 2 OrderAssignment (node)

1: if NumberOfChildren (node) = 0 then
2: return
3: else
4: if NumberOfChildren (node) = 2 then
5: OrderAssignment (nodel)
6: OrderAssignment (noder)
7: if SizeOfList (noder) > SizeOfList (nodel) then
8: nodelist ⇐ merge the lists of noder and nodel interleav-

ingly
9: else
10: nodelist ⇐ merge the lists of nodel and noder interleav-

ingly
11: end if
12: else
13: OrderAssignment (nodel)
14: OrderAssignment (nodem)
15: OrderAssignment (noder)
16: if SizeOfList (noder) > SizeOfList (nodel) then
17: nodelist ⇐ merge the lists of noder, nodel , and nodem

interleavingly
18: else
19: nodelist ⇐ merge the lists of nodel , nodem, and noder

interleavingly
20: end if
21: end if
22: end if

r = 2d and n = 2d+1−1. Since 2 and 3 are relatively prime,
3 does not divide evenly into 2d+1. Therefore, (2d+1 mod 3)
is either 1 or 2, and ((2d+1−1) mod 3) is either 0 or 1. That
is, the case (n mod 3) = 2 is impossible.

The question remaining is how to partition the image
space and schedule the workload for each group of proces-
sors. To ensure a balanced workload, an image is represented
as a 1D pixel array in a scanline order, which is partitioned
evenly among M participating processors in a group. For ex-
ample, at the leaf-node level of the compositing tree, M = 2
or 3 in a group. Thus, in the first stage, we divide the image
space evenly into two or three partitions and assign image
partitions to processors in the group. The order of assign-
ment follows the order of the index of the processors.

In the following image compositing stages, the number of
processors in a group increases as neighboring groups are
merged together. At each intermediate stage of composit-
ing, two or three groups are merged into a new group and
we maintain a total order of all their processors for the new
group. The total order is formed by interleaving the partial
orders of the groups being merged. The order of the groups
follows these two rules in order. First, a group having a
larger number of processors (i.e., the processors in the group
having smaller partitions assigned) in the previous stage gets
its order first in the current stage. Second, if the groups have
the same number of processors, the group with processors of
smaller indices gets its order first. This process is sketched
in Algorithm 2, where NumberOfChildren(node) returns
the number of children of node and SizeOfList(node) re-
turns the size of processor list of node. Calling OrderAs-

signment (root) generates the orders at all tree nodes.
For intuitive understanding, we illustrate our 2-3 swap

image compositing algorithm with five, seven, and nine pro-
cessors in Figure 1, 2, and 3, respectively. For simplicity, we
use 2D region to represent 1D array partition of the image.
Note that as the compositing progresses through different
stages, the number of processors that each processor in a

Figure 1: 2-3 swap image compositing with five proces-

sors. Image partition assignment order indicates which

processor is responsible for which partition in a group,

denoted by the parentheses. There are two composit-

ing stages. From the communication matrix given on

the right, we can see that at any stage, each processor

communicates with up to two other processors.

Figure 2: 2-3 swap image compositing with seven pro-

cessors. There are two compositing stages. At any stage,

each processor communicates with up to four other pro-

cessors.

Figure 3: 2-3 swap image compositing with nine proces-

sors. There are three compositing stages. At any stage,

each processor communicates with up to two other pro-

cessors.

group communicates with remains fairly small, which we
analyze next.

In a compositing tree with N processors, we know from
Algorithm 1 that a non-leaf node either has two or three
children. For the two children case, the number of proces-
sors assigned to child nodes could be either (M, M) or (M,



Figure 4: All possible cases of the image space par-

tition that is not perfectly aligned for the compositing

tree nodes. The figure shows the worst case scenarios

with the maximum number of partition overlaps. A pro-

cessor (denoted in red) communicates with other proces-

sors (denoted in yellow) in a group. Our further analysis

shows that (c) and (d) are impossible cases. Therefore,

a processor communicates up to four other processors in

a group.

Figure 5: An impossible case of one partition with M
processors overlapping with three partitions with M + 1
processors.

M+1). For the three children case, the number of processors
assigned to child nodes could be either (M, M, M) or (M, M,
M + 1)1. If the number of processors is evenly split in the
child nodes, i.e., (M, M) or (M, M, M), then the image space
partition is perfectly aligned for all nodes in a group and
each processor communicates with one (for the two children
case) or two (for the three children case) processors. How-
ever, the image space partition is not perfectly aligned for
all nodes in a group if the number of processors is not evenly
split in the child nodes, i.e., (M, M + 1) or (M, M, M + 1).
These cases with the maximum number of partition overlaps
are illustrated in Figure 4. In the figure, the processor de-
noted in red communicates with two, four, three, and four
other processors denoted in yellow in (a), (b), (c), and (d)
respectively.

A further analysis shows that Figure 4 (c) and (d) are ac-
tually impossible cases where one partition with M proces-
sors overlaps with three other processors in a partition with
M + 1 processors. Let us assume that such a case is possi-

1The (M, M +1, M +1) case is impossible, because we have
l = m≤ r for the three children case. Refer to Algorithm 1.

ble, i.e., the ith partition (denoted in red) with M processors
overlapping three partitions j− 1, j, and j + 1 (denoted in
yellow) with M +1 processors. If i = M, then j = M. That is,
the last partition with M processors overlaps the last three
partitions, as well as covering the last two partitions, with
M + 1 processors, as shown in Figure 5. In this case, we
have 1

M > 2
M+1 , which leads to 1 > M. Thus, this case is

impossible. If i < M, then j = i + 1. In this case, we have
i

M > i+1
M+1 + δ , where δ is a portion of the ( j + 1)th parti-

tion with M +1 processors. This leads to i−M > δ (M +1)M,
which is impossible since i < M and δ > 0. Therefore, the
number of processors that each processor in a group com-
municates with is bounded by four. This implies that the
performance of our 2-3 swap image compositing algorithm
would far surpasses that of the direct send method, which
in worst case requires a processor communicating with all
N−1 processors for N compositing processors.

4. COMPLEXITY ANALYSIS AND
COMPARISON

In this section, we first formulate the running time of the
direct send, binary swap, and 2-3 swap image compositing
methods. Then we provide the complexity analysis and com-
parison of these three methods.

4.1 Running Time Formulation
The image compositing methods take S stages to complete

using N compositing processors, where S = 1 for the direct
send method, S = log2 N for the binary swap method, and
S = �log2 N� for the 2-3 swap method. The total time for
compositing is:

T comp =
S

∑
i=1

T compi (1)

where T comp is the total running time needed for a processor
to complete its compositing, and T compi is the time the
processor spends at stage i.

At each stage, a processor first exchanges pixels with other
processors, which takes Texchangei time. After pixel ex-
change, a processor then blends the pixels (which it is re-
sponsible for) in T blendi time. Thus, the compositing time
is:

T compi = Texchangei +T blendi (2)

On the other hand, the total compositing time of a pro-
cessor can be expressed as the summation of the total ex-
changing time Texchange and the total blending time T blend,
i.e.,

T comp = Texchange+T blend

=
S

∑
i=1

Texchangei +
S

∑
i=1

T blendi (3)

where Texchangei consists of the time for sending (T sendi)
and the time for receiving (Trecvi). Let the latencies for
sending and receiving be Lsendi and Lrecvi, respectively. We
assume that a single send and a single receive take the same
amount of latency, which is denoted as lsendrecv. For the cur-
rent generation of supercomputer, the network usually sup-
ports full-duplex send and receive operations. So, sending
and receiving can be overlapped. Thus, we have:

Texchangei = max(Lsendi +T sendi, Lrecvi +Trecvi) (4)



and

Lsendi = Nsendi× lsendrecv, Lrecvi = Nrecvi× lsendrecv (5)

T sendi =
Psendi

Bsendi
, Trecvi =

Precvi

Brecvi
(6)

where Nsendi and Nrecvi are the numbers of send and receive
operations issued at stage i, respectively. Psendi and Precvi
are the size of pixel data that a processor sends and receives,
respectively. Each pixel contains four channels RGBA. In
our experiment, we use 32-bit floating point format for each
channel to ensure high precision compositing results. Bsendi
and Brecvi are the network bandwidth for sending and receiv-
ing data, respectively. Without considering link contention,
we also assume these two terms are the same, which is de-
noted as Bsendrecv.

The time for blending is:

T blendi =
Pblendi

Bblendi
(7)

where Pblendi is the size of pixel data that a processor is
responsible for blending. Bblendi is the amount of pixel data
a processor can blend per second, which is assumed as a
constant and denoted as Bblend.

Therefore, the overall compositing time can be written as:

T comp = Texchange+T blend =
S

∑
i=1

Texchangei +
S

∑
i=1

T blendi

=
S

∑
i=1

max(Lsendi +
Psendi

Bsendrecv
, Lrecvi +

Precvi

Bsendrecv
)

+
S

∑
i=1

Pblendi

Bblend

≤
S

∑
i=1

max(Lsendi, Lrecvi)

+
S

∑
i=1

max(
Psendi

Bsendrecv
,

Precvi

Bsendrecv
)

+
1

Bblend

S

∑
i=1

Pblendi

= lsendrecv×
S

∑
i=1

max(Nsendi, Nrecvi)

+
1

Bsendrecv
×

S

∑
i=1

max(Psendi, Precvi)

+
1

Bblend
×

S

∑
i=1

Pblendi (8)

We further denote:

Nsendrecv =
S

∑
i=1

max(Nsendi, Nrecvi)

Psendrecv =
S

∑
i=1

max(Psendi, Precvi)

Pblend =
S

∑
i=1

Pblendi (9)

From Equations (8) and (9), we have:

T comp≤ lsendrecv×Nsendrecv

+
1

Bsendrecv
×Psendrecv

+
1

Bblend
×Pblend (10)

In the following, we analyze Nsendrecv, Psendrecv, and
Pblend for the direct send, binary swap, and 2-3 swap al-
gorithms, respectively. We assume that the total number of
pixels in the final image is P, and the number of compositing
processors is N.

4.2 Direct Send
For the direct send algorithm, S is equal to 1, since it

requires only one stage of all-to-all communication. Each
processor sends P

N × (N−1) pixels to and receive P
N × (N−1)

pixels from all the other N−1 processors. So we have:

Nsendrecv =
S

∑
i=1

max(Nsendi, Nrecvi) = N−1 (11)

and

Psendrecv =
S

∑
i=1

max(Psendi, Precvi)

= max(
P
N
× (N−1),

P
N
× (N−1))

= P× (1−
1
N

) (12)

On the other hand, each of the N processors is responsible
for blending P

N pixels of the final image. So the total number
of pixels a processor needs to blend is:

Pblend =
S

∑
i=1

Pblendi =
P
N

+
P
N
× (N−1) = P (13)

4.3 Binary Swap
The binary swap algorithm takes S = log2 N stages to com-

plete. At the ith stage, each processor only needs to ex-
change pixels with another processor in its pair. The amount
of pixel data for a processor to send and receive are the same,
which is P

2i . Thus, we have:

Nsendrecv =
S

∑
i=1

max(Nsendi, Nrecvi) =
log2 N

∑
i=1

1

= log2 N (14)

and

Psendrecv =
S

∑
i=1

max(Psendi, Precvi) =
log2 N

∑
i=1

P
2i

= P× (1−
1
N

) (15)

At the ith stage, each processor in a pair is responsible for
blending P

2i pixels of the final image. So the total number of
pixels a processor needs to blend is:

Pblend =
S

∑
i=1

Pblendi =
log2 N

∑
i=1

(
P
2i +

P
2i )

= 2×P× (1−
1
N

) (16)



4.4 2-3 Swap
The 2-3 swap algorithm takes S = �log2 N� stages to com-

plete. Unlike the direct send and binary swap algorithms,
the workload of all processors at each stage of the 2-3 swap
could be imbalanced. For simplicity, we consider the max-
imum workload assigned to the processors at each stage as
their workload. This corresponds to analysis of the worst
case scenario.

From Section 3.3, we know that the number of proces-
sors that each processor in a group communicates with is
bounded by four. Therefore,

Nsendrecv =
S

∑
i=1

max(Nsendi, Nrecvi) =
�log2 N�

∑
i=1

4

= 4×�log2 N� (17)

We assume that at the (i−1)th stage, the image fraction
assigned to a processor is 1

Mi−1
, where Mi−1 is the number

of processors in the group at the (i−1)th stage. At the ith
stage, the image fraction assigned to the processor is 1

Mi
,

where Mi is the number of the participating processors in
the group at the ith stage.

Therefore, at the ith stage, the numbers of pixels each
processor in the group needs to send and receive are:

Psendi = (
1

Mi−1
−

1
Mi

)×P (18)

and

Precvi = c×
1

Mi
×P (19)

where c = 1 or 2, since each non-leaf node in the compositing
tree only has two or three children.

If c = 1, Mi−1 can be either �Mi
2 � or �Mi

2 �. We have:

1

�Mi
2 �
−

1
Mi
≤

1
Mi
≤

1

�Mi
2 �
−

1
Mi

(20)

Thus, the sending dominates pixel exchange when c = 1. In
the worst case, Mi = 2i +1 and Mi−1 = 2i−1, then

Psendrecv =
S

∑
i=1

max(Psendi, Precvi) =
S

∑
i=1

Psendi

= P×
S

∑
i=1

(
1

Mi−1
−

1
Mi

)

= P×
S

∑
i=1

(
1

2i−1 −
1

2i +1
)

≤ P× (1+
S

∑
i=1

1
2i× (2i +1)

)

≤ P× (1+
S

∑
i=1

1
4i ) < P× (1+

∞

∑
i=1

1
4i )

=
4
3
×P (21)

If c = 2, Mi−1 can be either �Mi
3 � or �Mi

3 �. In this case, we
also have:

1

�Mi
3 �
−

1
Mi
≤

2
Mi
≤

1

�Mi
3 �
−

1
Mi

(22)

That is, the sending also dominates pixel exchange when

c = 2. In the worst case, Mi = 2i+1− 1 and Mi−1 = � 2i+1−1
3 �,

then

Psendrecv =
S

∑
i=1

max(Psendi, Precvi) =
S

∑
i=1

Psendi

= P×
S

∑
i=1

(
1

Mi−1
−

1
Mi

)

= P×
S

∑
i=1

(
1

� 2i+1−1
3 �

−
1

2i+1−1
)

≤ P× (1+
S+1

∑
i=2

(
1

2i−1
))≤ P× (1+

1
6
×

S−1

∑
i=0

1
2i )

< P× (1+
1
6
×

∞

∑
i=0

1
2i ) =

4
3
×P (23)

From Equations (21) and (23), we can see that Psendrecv is
bounded by 4

3 ×P.
For the blending workload, we have:

Pblendi = c×
1

Mi
×P (24)

where c = 2 or 3, since each non-leaf node in the compositing
tree only has two or three children. If c = 2, in the worst
case, Pblendi becomes the largest when Mi = 2i. Thus, we
have:

Pblend =
S

∑
i=1

Pblendi =
S

∑
i=1

(c×
1

Mi
×P)

=
�log2 N�

∑
i=1

(2×
1
2i ×P)≤ 2×P× (1−

1
N

) (25)

If c = 3, then Mi = 2i+1−1. We have:

Pblend =
S

∑
i=1

Pblendi =
S

∑
i=1

(c×
1

Mi
×P)

=
S

∑
i=1

(3×
1

2i+1−1
×P) = 3×P×

S+1

∑
i=2

1
2i−1

≤ 3×P× (
1
3
×

S−1

∑
i=0

1
2i ) < 3×P× (

1
3
×

∞

∑
i=0

1
2i )

= 3×P× (
1
3
×2) = 2×P (26)

From Equations (25) and (26), we can see that Pblend is
bounded by 2×P.

4.5 Summary
Table 1 summarizes the complexity comparison of the di-

rect send, binary swap, reduced binary swap (Section 3.1),
and 2-3 swap algorithms. Note that for simplicity, the com-
plexity of the 2-3 swap algorithm derived in this section gives
a loose upper bound. For example, in latency evaluation,
chances are very slim for a processor to communicate with
four other processors in a group. The actual performance
based on the average case shows a better (tighter) bound,
which we present in the following section.

5. RESULTS AND DISCUSSION
We experimented with our 2-3 swap algorithm on the Cray

XT4 machine at the National Energy Research Scientific
Computing Center (NERSC), a DOE Office of Science facil-
ity at Lawrence Berkeley National Laboratory. The NERSC



Latency Send & Recv Blend

Direct Send lsendrecv× (N−1) 1
Bsendrecv ×P× (1− 1

N ) 1
Bblend ×P

Binary Swap lsendrecv× log2 N 1
Bsendrecv ×P× (1− 1

N ) 1
Bblend ×2×P× (1− 1

N )

Reduced Binary Swap lsendrecv× (�log2 N�+1) 1
Bsendrecv ×P× (2− 1

2�log2 N� )
1

Bblend ×2×P× (2− 1
2�log2 N� )

2-3 Swap lsendrecv×4×�log2 N� 1
Bsendrecv ×

4
3 ×P 1

Bblend ×2×P

Table 1: The summary of complexity of the direct send, binary swap, reduced binary swap, and 2-3 swap algorithms.

The complexity for the reduced binary swap algorithm can be straightforwardly derived from the formulation of the

binary swap algorithm (Section 4.3). Note that the complexity of the 2-3 swap algorithm shown here is the loosely-

estimated worst case scenario. The actual performance results from our experiments show a tighter bound on the

average.

Exchange time for a 10242 image Total compositing time for a 10242 image

Exchange time for a 20482 image Total compositing time for a 20482 image

Exchange time for a 40962 image Total compositing time for a 40962 image

Figure 6: The timing results of the direct send, binary swap, 2-3 swap and reduced binary swap algorithms on any

number of processors from 1 to 1024 with the output image resolutions of 10242 (top), 20482 (middle) and 40962 (bottom).

The left column shows the exchange time, and the right column shows the total image compositing time. For the direct

send method, the sudden drop of timing on 132 processors (top) and 525 processors (middle) is due to the message

size setting. The timing for binary swap algorithm is the same at the 2-3 swap and reduced binary swap algorithms

when the number of compositing processors is a power-of-two.

Figure 7: The maximum number of communication for

the 2-3 swap algorithm with an output image resolution

of 10242. The figure shows the results on any number

of processors from 1 to 1024. The maximum number

of communication is calculated as the summation of the

maximum number of communication for all nodes at each

level of the compositing tree.

Cray XT4 system, named Franklin, is a massively parallel
processing (MPP) system with 9660 compute nodes. Each
node has dual cores (2.6GHz dual-core AMD Opteron pro-
cessor) and 4GB of memory, and is connected to a dedi-
cated SeaStar2 router through Hypertransport with a 3D
torus topology. Such a topology is adopted to ensure high-
performance, low-latency communication for MPI jobs.

We tested any number of processors from 1 to 1024 with
three output image resolutions of 10242, 20482, and 40962.
We compare the algorithms in the worst case, where all pixel
data are considered for compositing. We did not implement
particular optimization techniques. Nevertheless, removing
blank pixels or not will not affect the comparison between
the 2-3 swap algorithm and the other algorithms. The only
change is that the number of total effective pixels becomes
smaller. Such a number is the same regardless which image



(a) (b)

Figure 8: The figure shows the timing breakdown of 2-3 swap for each of the processors. The output image resolution

is 10242. (a): 61 compositing processors. (b): 127 compositing processors.

(a) (b)

Figure 9: The figure shows the total compositing time of 2-3 swap for each of the processors. The output image

resolution is 10242. (a): 503 compositing processors. (b): 1021 compositing processors.

compositing and/or compression methods are used.
Figure 6 shows the pixel data exchange time and the total

image compositing time respectively for the direct send, bi-
nary swap, 2-3 swap, and reduced binary swap algorithms.
As described in Section 3.1, the reduced binary swap algo-
rithm uses only 2K−1 processors for image compositing when
the given number of processors N is not a power-of-two, i.e.,
2K−1 < N < 2K . For image resolution of 40962, we were not
able to get results beyond 1021 processors for the direct
send method (we changed the environment variables such as
MPICH_PTL_UNEXPECTED_EVENTS and MPICH_PTL_OTHER_EVENTS,
but still could not get a setting that works). It appears that
for the machine we tested, the large size of data exchanged
and the large number of all-to-all communication required
are over the capability of MPI to handle.

From Figure 6, we can see that when the number of pro-
cessors is a power-of-two, the timing for binary swap algo-
rithm is the same as the 2-3 swap and reduced binary swap
algorithms. The 2-3 swap algorithm maintains almost a con-
stant performance and scales much better than the direct
send method with the increase of processor number and/or
the increase of output image resolution. Moreover, in terms
of timing stability and efficiency, the 2-3 swap algorithm
also outperforms the reduced binary swap algorithm. The
reduced binary swap algorithm requires extra image data ex-
changed in the reduction stage (i.e., sending the images from
N−2K−1 processors to the rest of 2K−1, where 2K−1 < N < 2K)
and nearly doubles the image blending workload for a large
number of processors.

Note that for the direct send method, the sudden drops of
timing in Figure 6 (top and middle) are due to the setting of
MPICH_MAX_SHORT_MSG_SIZE in the Cray XT4 machine, which
indicates the maximum size of a message in bytes that can
be sent via the short (eager) protocol. The default value
for the machine we used is 128000 bytes. With the 10242

(20482) output image resolution, i.e., RGBA and 32-bit for
each channel, the machine started to use short messages
when the number of compositing processors changes from
131 to 132 (from 524 to 525). On the other hand, as the

special case for the 2-3 swap algorithm when the number of
compositing processors is a power-of-two, the performance
of the binary swap algorithm constitutes the lower bound for
the 2-3 swap algorithm. Nevertheless, when the number of
processors is not an exact power-of-two, the timing of the 2-
3 swap algorithm is at most two times as those of the binary
swap algorithm.

Figure 7 shows the maximum number of communication
for the 2-3 swap algorithm with an output image resolu-
tion of 10242. We tested any number of processors from 1 to
1024. The maximum number of communication is calculated
as the summation of the maximum number of communica-
tion for all nodes at each level of the compositing tree. The
statistics show that on average, the number of communica-
tion is 1.98×�log2 N�, which is much better than the upper
bound, 4×�log2 N�, that we estimate in Table 1. Among all
possible maximum numbers (one to four) of communication
for a processor at any stage of compositing, about 80% are
the cases of one and two. On the other hand, the statis-
tics from pixel data sending/receiving, and blending run on
any number of processors from 1 to 1024 show that the 2-
3 swap algorithm introduces a maximum 1.23×P for pixel
sending/receiving, where P is the size of the final image, and
a maximum 2.0×P for pixel blending. On average, it intro-
duces 1.19×P for pixel sending/receiving and 1.80×P for
pixel blending. The actual results show a tighter bound of
1.23 than 4

3 , which we estimate in Section 4.4.
We also provide the detail timing breakdown for the 2-

3 swap algorithm: Figure 8 shows the timing breakdown
for each of the processors when 61 and 127 processors are
used in compositing, respectively. As formulated in Section
4.1, the compositing time includes the data exchange time
and blending time. In the gathering stage, each processor
sends its composited partial image to a host processor for
tiling them to get the final image. In terms of the total
compositing time, the difference ratio, defined as (maxT −
minT )/maxT , where T = Texchange + T blend + T gather, is
43% for Figure 8 (a) and 52% for Figure 8 (b). In Figure 9,
we show the total compositing time for each of the proces-
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Figure 10: Rendering of a RMI data set. (a): an overview of the data. (b) - (f): five 5122 zoom-in views cropped from

a 40962 image output. The high-resolution, high-precision composited images allow clear observation of fine details in

the large volume data set.

sors when 503 and 1021 processors are used in compositing.
The difference ratios for the total compositing time are 50%
and 57% for Figure 9 (a) and (b), respectively.

Our test data set came from the Richtmyer-Meshkov In-
stability (RMI) simulation, which was made available through
the Lawrence Livermore National Laboratory. The RMI oc-
curs when an interface between fluids of differing density is
impulsively accelerated, e.g., by the passage of a shock wave.
The time-varying RMI data set is over 2TB. It has 274 time
steps, each with a spatial resolution of 2048× 2048× 1920.
Figure 10 shows an overview and several zoom-in views of
the rendering of the last time step with an output image
resolution of 40962. It can be seen that our high-resolution,
high-precision parallel image compositing solution delivers
high-quality visualization results that enable scientists to
observe fine details from the vast amounts of data.

In summary, the 2-3 swap method shows its advantages
over the direct send and reduced binary swap methods when
image compositing involves a large number of processors and
requires a high output image resolution. For large volume
visualization, the rendering stage could be very expensive.
Using a large number of processors for parallel rendering
is preferred since it cuts down the overall cost of the ren-
dering stage dramatically. 2-3 swap provides a natural so-

lution that utilizes all processors participating in rendering
for the following image compositing. 2-3 swap makes the
maximum use of available computing resources and yields
the best overall compositing efficiency.

6. SUMMARY
As we move into the era of petascale computing, it is

imperative to have a high-resolution, high-quality, and high-
performance solution for parallel rendering of large-scale sci-
entific volume data. In this paper, we present 2-3 swap, a
new parallel image compositing algorithm for large data vi-
sualization. Unlike the binary swap method, 2-3 swap is
very flexible as it can utilize any number of processors for
compositing. Every processor participates in all stages of
compositing, thus a maximum utilization of parallelism is
achieved. On the other hand, our solution is highly scal-
able compared with the straightforward direct send method.
Moreover, the 2-3 swap algorithm is easy to understand and
implement. We analyze the complexity of the 2-3 swap al-
gorithm and compare it with the direct send and binary
swap methods. We provide detailed performance compar-
isons and image results gathered with up to 1024 processors
on a supercomputer. The experimental results confirm the
flexibility and scalability of 2-3 swap. In the future, we plan



to employ optimization methods to reduce the amount of
pixel data exchanged and to better balance the composit-
ing calculations. We also would like to experiment with 2-3
swap on other graphics and visualization applications, such
as rendering of massive polygon models.
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